Hess's Law Worksheet Practice

1. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-2439 \mathrm{~kJ}$
$4 \mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=3438 \mathrm{~kJ}$
Answer $=249.8 \mathrm{~kJ}$
2. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta \mathrm{H}=-94.5 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=71.2 \mathrm{~kJ}$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-283 \mathrm{~kJ}$
Answer $=235 \mathrm{~kJ}$
3. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{CH}_{4} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{g})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-37 \mathrm{~kJ}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-46 \mathrm{~kJ}$
$\mathrm{CH}_{4} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-65 \mathrm{~kJ}$
Answer $=-18 \mathrm{~kJ}$
4. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \quad \Delta \mathrm{H}=-235.5 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-207 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=44 \mathrm{~kJ}$
Answer $=72 \mathrm{~kJ}$
5. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}=-685.5 \mathrm{~kJ}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{I})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}=-583.5 \mathrm{~kJ}$
Answer $=204.0 \mathrm{~kJ}$
6. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta H=-115 \mathrm{~kJ}$
$2 \mathrm{NH}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+7 \mathrm{H}_{2}(\mathrm{~g})$
$\Delta H=-142.5 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$\Delta H=-43.7 \mathrm{~kJ}$
Answer $=-83 \mathrm{~kJ}$
7. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

```
H2O(I) }->\mp@subsup{\textrm{H}}{2}{}(\textrm{g})+1/2\mp@subsup{\textrm{O}}{2}{}(\textrm{g})\quad\Delta\textrm{H}=643\textrm{kJ
\mp@subsup{C}{2}{}\mp@subsup{H}{6}{}(\textrm{g})->2\textrm{C}(\textrm{s})+3\mp@subsup{\textrm{H}}{2}{}(\textrm{g})}\quad\Delta\textrm{H}=190.6\textrm{kJ
2CO
Answer = 886 kJ
```

8. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{CH}_{4} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CH}_{2} \mathrm{O}(\mathrm{g})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=22.5 \mathrm{~kJ}$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=57.5 \mathrm{~kJ}$
$\mathrm{CH}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}=81.2 \mathrm{~kJ}$
Answer $=-46.2 \mathrm{~kJ}$
9. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})$
$\mathrm{COCl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=47.5 \mathrm{~kJ}$
$2 \mathrm{HCl}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=105 \mathrm{~kJ}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{I})+\mathrm{H}_{2}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{COCl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\Delta \mathrm{H}=-402.5 \mathrm{~kJ}$
Answer $=-230 \mathrm{~kJ}$
10. Find the ΔH for the reaction below, given the following reactions and subsequent ΔH values:
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=283.5 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-213.7 \mathrm{~kJ}$
$2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=849 \mathrm{~kJ}$
Answer $=-705 \mathrm{~kJ}$
11. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:
$\mathrm{HCl}(\mathrm{g})+\mathrm{NaNO}_{2}(\mathrm{~s}) \rightarrow \mathrm{HNO}_{2}(\mathrm{I})+\mathrm{NaCl}(\mathrm{s})$

$2 \mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$	$\Delta \mathrm{H}=507 \mathrm{~kJ}$
$\mathrm{NO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})$	$\Delta \mathrm{H}=-427 \mathrm{~kJ}$
$\mathrm{NO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-43 \mathrm{~kJ}$
$2 \mathrm{HNO}_{2}(\mathrm{l}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\Delta \mathrm{H}=34 \mathrm{~kJ}$

Answer $=-78 \mathrm{~kJ}$
12. Find the $\Delta \mathrm{H}$ for the reaction below, given the following reactions and subsequent $\Delta \mathrm{H}$ values:

$\mathrm{Zn}(\mathrm{s})+1 / 8 \mathrm{~S}_{8}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{~s})$	
$\mathrm{Zn}(\mathrm{s})+1 / 8 \mathrm{~S}_{8}(\mathrm{~s}) \rightarrow \mathrm{ZnS}(\mathrm{s})$	$\Delta \mathrm{H}=-183.92 \mathrm{~kJ}$
$2 \mathrm{ZnS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-927.54 \mathrm{~kJ}$
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$	$\Delta \mathrm{H}=-196.04 \mathrm{~kJ}$
$\mathrm{ZnO}(\mathrm{s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnSO}_{4}(\mathrm{~s})$	$\Delta \mathrm{H}=-230.32 \mathrm{~kJ}$
Answer $=-976.03 \mathrm{~kJ}$	

Answer $=-976.03 \mathrm{~kJ}$

