Nuclear Chemistry

Problem \#1. Complete and balance the following equations by supplying the missing particles or energy ray. Identify the type of radioactive decay for each reaction.
a) ${ }_{88}^{224} \mathrm{Ra} \rightarrow{ }_{86}^{220} \mathrm{Rn}+{ }_{\square}$
b) ${ }_{88}^{226} \mathrm{Ra} \rightarrow{ }_{86}^{222} \mathrm{Rn}+{ }_{2}^{4} \mathrm{He}+\square$
c) ${ }_{90}^{232} \mathrm{Th} \rightarrow{ }_{91}^{232} \mathrm{~Pa}+$
d) ${ }_{7}^{13} \mathrm{~N} \rightarrow{ }_{6}^{13} \mathrm{C}+$
e) ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow+{ }_{36}^{91} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}$
f) ${ }_{98}^{249} \mathrm{Cf}+\longrightarrow{ }_{104}^{257} \mathrm{X}+4{ }_{0}^{1} \mathrm{n}$

Problem \#2. Write complete and balance equations for each of the following processes, or write the shorthand notation for the given reaction:
a) ${ }_{5}^{10} B(\alpha, p){ }_{6}^{13} C$
b) ${ }_{47}^{107} \mathrm{Ag}(\mathrm{n}, 2 \mathrm{n}){ }_{47}^{106} \mathrm{Ag}$
c) ${ }_{11}^{23} \mathrm{Na}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{11}^{24} \mathrm{Na}+$
d) ${ }_{92}^{238} \mathrm{U}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{98}^{246} \mathrm{Cf}+4{ }_{0}^{1} \mathrm{n}$
e) $\quad\left({ }_{1}^{3} \mathrm{H}, \mathrm{n}\right){ }_{2}^{4} \mathrm{He}$
f) ${ }_{35}^{81} \mathrm{Br}($ \qquad , n) ${ }_{101}^{256} \mathrm{Md}$

Problem \#3. Write nuclear equations for the following process:
a) krypton-81 undergoes beta decay
b) alpha decay of uranium- 238
c) electron capture of lead-206
d) thorium-230 undergoes alpha emission
e) positron emission of radium-226
f) neutron bombardment of zirconium-99
g) thorium- 230 decays a radium isotope
h) nitrogen-13 undergoes beta decay
i) iodine-131 undergoes beta decay
j) gold-195 undergoes electron decay

Problem \#4. A piece of wood from an ancient artifact has a carbon-14 activity of 11.7 disintegrations per min. per gram of carbon. Current carbon-14 activity in fresh samples is 15.3 disintegrations per min. per grams of carbon. The half-life of carbon is 5730 yrs. calculate the age of the wood sample.

Problem \#5. The half-life of nucleus Rn-222 is 3.88 days. How many mg of a 5000 mg sample of $\mathrm{Rn}-222$ remains after sixty days?

Problem \#6. What is the original mass of C-14 in a sample if 10.00 mg of it remains after 20,000 years? The halflife of C-14 is 5730 years.

Problem \#7. Calculate the energy of 1.0 amu in joules using the Einstein's relationship.
$\left(1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}, 1 \mathrm{~g}=6.02 \times 10^{23} \mathrm{amu}\right) \quad \mathrm{E}=\mathrm{C}^{2}(\Delta \mathrm{~m})$
Problem \#8. For the nuclear reaction

calculate the energy in joules associated with the reaction of one atom of nitrogen-14 with one atom of $\mathrm{He}-4$, given that isotopic masses(amu) are N-14 (14.00307); He-4 (4.00260); O-17 (16.99991); and $\mathrm{H}-1(1.007825)$.

Problem \#9. Carbon-14 decays as follows:

isotopic masses are 14.00307 for nitrogen-14 and 14.00324 for carbon-14. What energy change occurs in the beta decay of C-14?

Problem \#10. Calculate the nuclear binding energy of Li-7 and $\mathrm{Cl}-35$ if this nucleous has a mass of $7.01435 \mathrm{amu} .\left(\mathrm{m}_{\mathrm{p}}=1.00728 \mathrm{amu}, \mathrm{m}_{\mathrm{n}}=1.00867 \mathrm{amu}\right)$

Problem \#11. ${ }_{26}^{56}$ Fe has a mass defect of 0.58872 amu . What is its binding energy per nucleon?

Problem \#12. Predict which of the following nuclides are likely to be radioactive (Briefly justify your choice) and determine the mode of decay.
a) Carbon-14
b) Xenon-118
c) Plutonium-239
d) Indium-120
e) $\mathrm{He}-4$
f) $\mathrm{Ca}-40$
g) $\mathrm{Tc}-98$
h) $\mathrm{Zn}-64$
i) $\mathrm{Br}-90$
j) Ag-103

