## Worksheet

## **Nuclear Chemistry**

**Problem #1.** Complete and *balance* the following equations by supplying the missing particles or energy ray. *Identify the type* of radioactive decay for each reaction.



**Problem #2.** Write complete and balance equations for each of the following processes, or write the shorthand notation for the given reaction:

a)  ${}_{5}^{10}B(\alpha, p) {}_{6}^{13}C$ b)  ${}_{47}^{107}Ag(n, 2n) {}_{47}^{106}Ag$ c)  ${}_{11}^{23}Na + {}_{0}^{1}n \rightarrow {}_{11}^{24}Na + ---$ e)  $---- ({}_{1}^{3}H, n) {}_{2}^{4e}$ f)  ${}_{35}^{81}Br(-, n) {}_{101}^{256}Md$ 

Problem #3. Write nuclear equations for the following process:

| a) krypton-81 undergoes beta decay     | b) alpha decay of uranium-238           |
|----------------------------------------|-----------------------------------------|
| c) electron capture of lead-206        | d) thorium-230 undergoes alpha emission |
| e) positron emission of radium-226     | f) neutron bombardment of zirconium-99  |
| g) thorium-230 decays a radium isotope | h) nitrogen-13 undergoes beta decay     |
| i) iodine-131 undergoes beta decay     | j) gold-195 undergoes electron decay    |

- **Problem #4.** A piece of wood from an ancient artifact has a carbon-14 activity of 11.7 disintegrations per min. per gram of carbon. Current carbon-14 activity in fresh samples is 15.3 disintegrations per min. per grams of carbon. The half-life of carbon is 5730 yrs. calculate the age of the wood sample.
- **Problem #5**. The half-life of nucleus Rn-222 is 3.88 days. How many mg of a 5000 mg sample of Rn-222 remains after sixty days?
- **Problem #6.** What is the original mass of C-14 in a sample if 10.00 mg of it remains after 20,000 years? The half-life of C-14 is 5730 years.
- **Problem #7.** Calculate the energy of 1.0 amu in joules using the Einstein's relationship. (1 J= 1 kg.m<sup>2</sup>/s<sup>2</sup>, 1g =6.02x10<sup>23</sup> amu)  $E = C^{2} (\Delta m)$
- Problem #8. For the nuclear reaction

 ${}^{14}_{7} N + {}^{4}_{2} He \rightarrow {}^{17}_{8} O + {}^{1}_{H} H$ 

calculate the energy in joules associated with the reaction of one atom of nitrogen-14 with one atom of He-4, given that isotopic masses(amu) are N-14 (14.00307); He-4 (4.00260); O-17 (16.99991); and H-1(1.007825).

Problem #9. Carbon-14 decays as follows:

 ${\stackrel{14}{\overset{\phantom{a}}{\phantom{a}}}} C \xrightarrow{0} {\stackrel{\phantom{a}}{\phantom{a}}} {\stackrel{\phantom{a}}{\phantom{a}}} {\stackrel{\phantom{a}}{\phantom{a}}} + {\stackrel{14}{\phantom{a}}} N$ 

isotopic masses are 14.00307 for nitrogen-14 and 14.00324 for carbon-14. What energy change occurs in the beta decay of C-14?

<u>Problem #10.</u> Calculate the nuclear binding energy of Li-7 and Cl-35 if this nucleous has a mass of 7.01435 amu. ( $m_p = 1.00728$  amu,  $m_n = 1.00867$  amu)

**Problem #11**. Fe has a mass defect of 0.58872 amu. What is its binding energy per nucleon?

**Problem #12.** Predict which of the following nuclides are likely to be radioactive (Briefly justify your choice) and determine the mode of decay.

| a) Carbon-14  | b) Xenon-118 | c) Plutonium-239 |
|---------------|--------------|------------------|
| d) Indium-120 | e) He-4      | f) Ca-40         |
| g) Tc-98      | h) Zn-64     | i) Br-90         |
| j) Ag-103     |              |                  |