Spontaneity and Free Energy
 Assignment

1. For each of the following pairs, circle the situation which favors a spontaneous reaction:

a)	endothermic reaction	or	exothermic reaction
b)	negative value of $\Delta \mathrm{H}^{\circ}$	or	positive value of $\Delta \mathrm{H}^{\circ}$
c)	negative value of $\Delta \mathrm{S}^{\circ}$	or	positive value of $\Delta \mathrm{S}^{\circ}$
d)	increasing entropy	or	decreasing entropy
e)	positive value of $\Delta \mathrm{G}^{\circ}$	or	negative value of $\Delta \mathrm{G}^{\circ}$

2. Describe the circumstances where:
a) $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=0$ \qquad
b) $S=0$
c) $\Delta G_{f}{ }^{\circ}=0$ \qquad
d) $\Delta G=0$
3. Which one of the following shows and increase in entropy:
a) dissolving sugar in a cup of hot tea.
b) arranging a pack of playing cards into suits.
c) building a sand castle on the beach.
4. Using values of $\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ from the table calculate $\Delta \mathrm{G}^{\circ}$ for the following reaction and tell whether or not the reaction will occur spontaneously. Show your work clearly. Use the formula $\Delta \mathrm{G}=\Sigma \Delta \mathrm{G}_{\text {products }}-\Sigma \Delta \mathrm{G}_{\text {reactants }}$

$$
\mathrm{C}_{2} \mathrm{H}_{6(g)}+2 \mathrm{Cl}_{2(g)} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(g)+2 \mathrm{HCl}_{(g)}
$$

Substance	$\Delta \mathbf{G}_{\boldsymbol{f}}{ }^{\circ}$ (kJ/mol)
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-32.9
$\mathrm{Cl}_{2(\mathrm{~g})}$	0.0
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2(\mathrm{~g})}$	-80.3
$\mathrm{HCl}_{(\mathrm{g})}$	-95.2

Is the reaction spontaneous?
5. Calculate ΔG° using the formula $\quad \Delta G=\Delta H-T \Delta S$

Also, for each question, tell whether or not the reaction will be spontaneous.
Values for $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are given. All reactions take place at $25^{\circ} \mathrm{C}$ (298 K).
Remember to convert $\Delta \mathrm{S}$ values to kJ .
a) $\mathrm{CH}_{3} \mathrm{OH}_{(g)}+1 \frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$

$$
\Delta \mathrm{H}=-638.4 \mathrm{~kJ} \quad \Delta \mathrm{~S}=156.9 \mathrm{~J} / \mathrm{K}
$$

b) $2 \mathrm{NO}_{2(g)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4(g)}$

$$
\Delta \mathrm{H}=-57.2 \mathrm{~kJ} \quad \Delta \mathrm{~S}=-175.9 \mathrm{~J} / \mathrm{K}
$$

6. Calculate $\Delta \mathrm{G}^{\circ}$ for the following reaction using values of $\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ obtained from the Table of Thermochemical Data. Will the reaction be spontaneous?

Use the formula $\Delta \mathrm{G}=\Sigma \Delta \mathrm{G}_{\text {products }}-\Sigma \Delta \mathrm{G}_{\text {reactants }}$

$$
3 \mathrm{Fe}_{2} \mathrm{O}_{3(s)} \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4(s)}+1 / 2 \mathrm{O}_{2(g)}
$$

7. For a certain spontaneous reaction, the change in enthalpy $\left(\Delta \mathrm{H}^{\circ}\right)$ is -92.0 kJ and $\Delta G^{\circ}=-50.2 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{S}$.
8. Calculate the entropy change $\Delta \mathrm{S}$ per mole for the following reaction: Combustion of hydrogen in a fuel cell at 298 K
$\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Delta \mathrm{H}=-241.6 \mathrm{~kJ}, \Delta \mathrm{G}=-228.4 \mathrm{~kJ}$ (Ans $\Delta \mathrm{S}=-44.3 \mathrm{JK}^{-1}$)
9. Calculate the free energy change for the reaction:

$$
\mathrm{N} 2(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \text { at } 298 \mathrm{~K}
$$

$\Delta \mathrm{H}=-92.4 \mathrm{~kJ}, \Delta \mathrm{~S}=-197.6 \mathrm{JK}-1($ Ans $\Delta \mathrm{G}=-33.5 \mathrm{~kJ})$
10. For the reaction $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=30.56 \mathrm{~kJ}, \Delta \mathrm{~S}=+66 \mathrm{JK}-1$ at 1 atm pressure. Calculate the temperature at which the free energy change is equal to zero. Predict the nature of the reaction at this temperature and below this temperature.
(Ans:463K)

