1. For each of the following pairs, circle the situation which favors a spontaneous reaction:

a)	endothermic reaction	or	exothermic reaction
b)	negative value of ΔH°	or	positive value of ΔH°
c)	negative value of ΔS°	or	positive value of ΔS°
d)	increasing entropy	or	decreasing entropy
e)	positive value of ΔG°	or	negative value of ΔG°

2. Describe the circumstances where:

- 3. Which one of the following shows and increase in entropy:
 - a) dissolving sugar in a cup of hot tea.
 - b) arranging a pack of playing cards into suits.
 - c) building a sand castle on the beach.

4. Using values of ΔG_f° from the table calculate ΔG° for the following reaction **and** tell whether or not the reaction will occur spontaneously. Show your work clearly. Use the formula $\Delta G = \Sigma \Delta G_{\text{products}} - \Sigma \Delta G_{\text{reactants}}$

Substance	∆G _f ° (kJ/mol)
$C_2H_{6(g)}$	-32.9
$CI_{2(g)}$	0.0
$C_2H_4Cl_{2(g)}$	-80.3
HCI(g)	-95.2

 $C_2H_{6(g)}+2CI_{2(g)}\rightarrow C_2H_4CI_2\ _{(g)}+2\ HCI_{(g)}$

Is the reaction spontaneous?

5. Calculate ΔG° using the formula $\Delta G = \Delta H - T\Delta S$

Also, for each question, tell whether or not the reaction will be spontaneous.

Values for ΔH and ΔS are given. All reactions take place at 25°C (298 K). Remember to convert ΔS values to kJ.

a) $CH_3OH_{(l)}$ + 1½ $O_{2(g)} \rightarrow CO_{2(g)}$ + 2 $H_2O_{(g)}$

$$\Delta H = -638.4 \text{ kJ}$$
 $\Delta S = 156.9 \text{ J / K}$

b) 2 NO_{2(g)} \rightarrow N₂O_{4(g)}

 $\Delta H = -57.2 \text{ kJ}$ $\Delta S = -175.9 \text{ J} / \text{K}$

6. Calculate ΔG° for the following reaction using values of $\Delta G_{f^{\circ}}$ obtained from the Table of Thermochemical Data. Will the reaction be spontaneous?

Use the formula $\Delta G = \Sigma \Delta G_{\text{products}} - \Sigma \Delta G_{\text{reactants}}$

 $3 \text{ Fe}_2 O_{3(s)} \rightarrow 2 \text{ Fe}_3 O_{4(s)} + \frac{1}{2} O_{2(g)}$

7. For a certain spontaneous reaction, the change in enthalpy (ΔH°) is -92.0 kJ and ΔG° = -50.2 kJ at 25°C. Calculate ΔS .

 Calculate the entropy change ∆S per mole for the following reaction: Combustion of hydrogen in a fuel cell at 298 K

 $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(g)} \ \Delta H = -241.6 \ kJ, \ \Delta G = -228.4 kJ \ (\ Ans \ \Delta S = -44.3 \ JK^{-1})$

9. Calculate the free energy change for the reaction: $N2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ at 298 K $\Delta H = -92.4kJ, \Delta S = -197.6 JK-1$ (Ans $\Delta G = -33.5kJ$)

10. For the reaction Ag₂O(s) → 2Ag(s) + ½ O₂(g) ΔH = 30.56kJ, ΔS = +66JK-1 at 1 atm pressure. Calculate the temperature at which the free energy change is equal to zero. Predict the nature of the reaction at this temperature and below this temperature.
(Ans:463K)