Ksp and Molar Solubility Worksheet - 01

1. Use the chemical AgCl to describe solubility, molar solubility and solubility product

- Write balanced equations and solubility product expressions for the following compounds

 CuBr
 - b. ZnC_2O_4
 - c. Ag_2CrO_4
 - $d. \quad Hg_2Cl_2$
 - e. AuCl₃
 - f. Mn₃(PO₄)₃

3. Silver Chloride has a larger K_{sp} than silver carbonate ($K_{sp} = 1.6 \times 10^{-10}$ and 8.1×10^{-12} respectively). Does this mean that AgCl also has a larger molar solubility than Ag₂CO₃? Explain.

- 4. Calculate the concentration of ions in the following saturated solutions

 - a. [I⁻] in Agl solutions with $[Ag^+] = 9.1 \times 10^{-9}$ b. $[Al^{3+}]$ in Al(OH)₃ solution with $[OH^-] = 2.9 \times 10^{-9}$

5. From the solubility data given, calculate the solubility product for the following compounds: a. $SrF_2 7.3x10^{-2} g/L$ b. Ag₃PO₄ 6.7x10⁻³ g/L

6. The molar solubility of $MnCO_3$ is $4.2x10^{-6}$ M. What is K_{sp} for this compound?

7. If 20.0 mL of 0.10 M Ba(NO₃)₂ are added to 50.0 mL of 0.10 M Na₂CO₃, will BaCO₃ precipitate? Supply explanation / calculations to support answer.