Ksp and Molar Solubility Problems #2

- 1. Calculate the K_{sp} for each of the salts whose solubility is listed below. a. CaSO₄ = 5.0 x 10⁻³ mol/L
 - b. $MgF_2 = 2.7 \times 10^{-3} mol/L$
 - c. $AgC_2H_3O_2 = 1.02 g/100 mL$
 - d. $SrF_2 = 12.2 \text{ mg}/100 \text{ mL}$
- 2. Calculate the solubility in moles/L of each of three salts a. AgCN $K_{sp} = 2.0 \times 10^{-12}$

b. BaSO₄ K_{sp} = 1.5×10^{-9}

c. FeS $K_{sp} = 3.7 \times 10^{-19}$

- 3. Calculate the concentration of the cations in mg/mL in each of the saturated solutions. d. Mg(OH)₂ K_{sp}= 9.0 x 10⁻¹²
 - e. $Ag_2S K_{sp} = 1.6 \times 10^{-49}$

- f. $CaF_2 K_{sp} = 4.9 \times 10^{-11}$
- 4. Consider these sparingly soluble salts:

 - a. PbS $K_{sp} = 8.4 \times 10^{-28}$ b. PbSO₄ $K_{sp} = 1.8 \times 10^{-8}$ c. Pb(IO₃)₂ $K_{sp} = 2.6 \times 10^{-13}$
 - i. Which is the most soluble?
 - ii. Calculate the solubility in moles/L for PbSO₄.
 - iii. How many grams of PbSO₄ dissolve in 1 L of solution?
 - iv. How can you decrease the concentration of $Pb^{2+}(aq)$ in a saturated solution of $PbSO_4$ solution?

v. What is the concentration in moles/L of PbS in a saturated solution of the salt?