SCH4U

Online Course Stan Vincent

Todays Lesson

We will cover these skills:

- Define Reversible reactions
- Equilibrium State
- Define Irreversible reactions
- Conditions for equilibrium
 - Closed System
 - Constant Temperature
- Difference between \rightarrow and \rightleftharpoons

Stan Vincent

Reversible reaction

A reversible reaction is a chemical reaction where the reactants form products, that in turn, react together to give the reactants back.

 $aA + bB \rightleftharpoons cC + dD$

State of Equilibrium

Reversible reactions will reach an equilibrium point where the concentrations of the reactants and products will no longer change

Only closed systems can attain Equilibrium

Irreversible reaction

An irreversible reaction always goes to completion and the products cannot combine to give the reactants back in one step.

 $aA + bB \rightarrow cC + dD$

Stan Vincent

Law of Mass Action

The rate of a reaction is directly proportional to the product of the concentrations of the reactants raised to the appropriate coefficients.

 $aA + bB \rightleftharpoons cC + dD$ Rate = $k[A]^{a}[B]^{b}$ For forward reaction Rate = $k[C]^{c}[D]^{d}$ For backward reaction

Equilibrium Constant Kc

A numerical value representing the equilibrium state which is a ratio of the product of concentration of products to reactants

$$aA + bB \rightleftharpoons cC + dD$$
$$Kc = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Equilibrium Constant Kc

•:

$$N_{2(g)} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$$

Kc =
$$\frac{[NH_3]^2}{[N_2][H_2]^3}$$

Stan Vincent

HOMOGENOUS HETEROGENOUS EQUILIBRIA

Homogenous Equilibria

If the reactants and products are in the same phase (state) in a chemical reaction, then the reaction is referred to as a homogenous equilibria

 $N_{2(g)} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$

Kc for Homogenous Equilibria Gas phase

 $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

Kc =
$$\frac{[NH_3]^2}{[N_2][H_2]^3}$$

Kc for Homogenous Equilibria Gas phase

$$N_2O_{4(brown gas)} \Leftrightarrow 2NO_{2(colorless gas)}$$

Kc =
$$\frac{[NO_2]^2}{[N_2O_4]}$$

Kc for Homogenous Equilibria Aqueous solutions

$$Fe^{3+}_{(aq)} + SCN^{-}_{(aq)} \Leftrightarrow [FeSCN]^{2+}_{(aq)}$$

Reactants and products in aqueous phase (homogenous)

Kc =
$$\frac{[FeSCN^{2+}]}{[Fe^{3+}][SCN^{-}]}$$

Heterogenous Equilibria

If the reactants and products are in different phases (state) in a chemical reaction, then the reaction is referred to as a heterogenous equilibria

$$MgCO_{3(s)} \leftrightarrows MgO_{(s)} + CO_{2(g)}$$

Kc for Heterogenous Equilibria Solid / Gas

$$MgCO_{3(s)} \Leftrightarrow MgO_{(s)} + CO_{2(g)}$$

Solids and liquids not included in
the equilibrium expression

$$\mathbf{Kc} = \frac{[CO_2]}{[1]}$$

Kc for Heterogenous Equilibria Solid and Aqueous ions

$$3Ca^{2+}_{(aq)} + 2PO_4^{3-}_{(aq)} \leftrightarrows Ca_3(PO_4)_{2(s)}$$

Solids are not included in the equilibrium expression

Kc =
$$\frac{[1]}{[Ca^{3+}]^3 [PO_4^{3-}]^2}$$

Kc Expression For Molar Concentrations

If for a chemical reaction molar concentrations are given, we can write the Kc expression

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$
$$Kc = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

Kp Expression For Partial Pressures

If on the other hand the partial pressures are given in a reaction involving gases, we can write the Kp expression

$$N_{2(g)} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$$

 $Kp = \frac{[P_{NH3}]^2}{[P_{N2}][P_{H2}]^3}$

Relation between Kc and Kp

 $Kp = Kc RT^{\Delta n}$

$$\Delta n = (n_{gas \text{ products}}) - (n_{gas \text{ reactants}})$$
$$\Delta n = (n_{gas \text{ products}} 2) - (n_{gas \text{ reactants}} 1+3)$$
$$\Delta n = 2 - 4 = -2$$

Δn For $\underline{N_{2(g)}} + 3H_{2(g)} \leftrightarrows 2NH_{3(g)}$

Reactants and products should be gases. Do not include moles of reactants and products that are solids in the reaction

Determine Kp for the following reaction at 500° C if Kc is 6.0×10^{-2} R = 0.0821L atm K⁻¹ mol⁻¹

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$
$$\Delta n = (n_{\text{gas products}} 2) - (n_{\text{gas reactants}} 1+3)$$
$$\Delta n = 2 - 4 = -2$$

 $Kp = Kc RT^{\Delta n}$ $Kp = (6.0x10^{-2})[(0.0821)(773K)]^{-2}$ $Kp = (6.0x10^{-2}) (63.5)^{-2}$ $Kp = 1.5x10^{-5}$

