Equilibrium problems

1. At a certain temperature a mixture of H_{2} and I_{2} was used to prepare HI by placing a 0.100 mol of H_{2} and 0.100 mol of I_{2} into a 1.0 L liter flask. After a period of time the equilibrium was achieved for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g})$ When the system attained equilibrium the concentration of I_{2} dropped to $0.020 \mathrm{~mol} / \mathrm{L}$. What is the value of Kc for this reaction?
Ans. Ke or $\mathrm{Kc}=64$
2. The reversible reaction $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}$ Equilibrium concentrations of [CO] $=0.300 \mathrm{M}$, $\left[\mathrm{H}_{2}\right]=0.800 \mathrm{M}$, and $\left[\mathrm{CH}_{4}\right]=0.400 \mathrm{M}$ at $1500{ }^{\circ} \mathrm{C}$. Kc for the reaction is 5.67 for this reaction. What is the equilibrium concentration of $\mathrm{H}_{2} \mathrm{O}$ in this mixture? Ans. $\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]=0.0678 \mathrm{M}$
3. The reaction $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \mathrm{Has}$ a $\mathrm{Kc}=4.06$ at $500{ }^{\circ} \mathrm{C}$. If 0.100 mol of $\mathrm{CO}(\mathrm{g})$ and 0.100 mol of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are placed in a 1 liter reaction vessel at this temperature, what are the concentrations of the reactants and products when the system attain equilibrium Ans: $x=0.0668 \mathrm{M}$
4. Decomposition of water at $1000{ }^{\circ} \mathrm{C}$ has a Kc value for the reaction which is 7.3×10^{-18}
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
If 0.100 M is the initial concentration of water, what will the H_{2} concentration be at equilibrium. Ans: $\mathrm{x}=5.26 \times 10^{-7}$
5. How many moles of HI are present at equilibrium when 2.0 moles of H_{2} is mixed with 1.0 moles of I_{2} in a 0.50 L container and allowed to react at $448^{\circ} \mathrm{C}$. At this temperature $\mathrm{K}_{\mathrm{eq}}=50$. [Ans: 1.9 moles of HI Use quadratic equation to solve for x the concentration of the reactant]
6. At 500 degrees Celsius for the reaction between nitrogen and hydrogen to produce ammonia, the Kc value is found to be 6.0×10^{-2} What is the value of $K p$ for the same reaction. Value of $R=0.0821 \mathrm{~L}$ atmK ${ }^{-1} \mathrm{~mol}^{-1}$ or $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ When $\mathrm{R}=0.0821$ Ans: 1.5×10^{-5} (Converting Kc to Kp problem)
