Worksheet - Advanced pH

Example:
Acetic Acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, has a dissociation constant, K_{a}, of $1.82 \cdot 10^{-5}$. Find the pH of a 0.2 M solution of Acetic Acid, using the following equilibrium table.

Concentrations	$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$	$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$
Initial	0.2	0	0
Change	-x	+x	+x
Equilibrium	$0.2-\mathrm{x}$	x	x

(1) Set up: $K_{a}=$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right]$
$\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$
(2) Plug in:
$1.82 \cdot 10^{-5}=$
$\xrightarrow[(0.2-x)]{(x)}$
(3) Assume $x \ll 0.2$
(3) Plug in again: $\begin{aligned} 1.82 \cdot 10^{-5} & = \\ & x^{2}\end{aligned}$
0.2
(4) Solve for $x^{2}: \quad x^{2}=\left(1.82 \cdot 10^{-5}\right) \cdot(0.2)=3.64 \cdot 10^{-6}$
(5) Solve for x : $\mathrm{x}=1.91 \cdot 10^{-3}$
(6) Find pH . Since $\mathrm{x}=\left[\mathrm{H}^{+}\right]$at equilibrium, $\mathrm{pH}=-\log \mathrm{x}=-\log \left(1.91 \cdot 10^{-3}\right)=2.72$

Use the same plan of attack to find the pH of the following .

1. A 0.015 M sample of Phosphoric Acid, $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{~K}_{\mathrm{a}}=7.5 \times 10^{-3} \quad \mathrm{pH}=$

Concentrations	$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$	$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right]$
Initial			
Change			
Equilibrium			

SCH4U Acid Base Equilibrium

2. A 0.12 M sample of Formic Acid, $\mathrm{HCOOH}, \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4} \quad \mathrm{pH}=$

Concentrations	$[\quad]$	$\left[\mathrm{H}^{+}\right]$	$[$
Initial			
Change			
Equilibrium			

3. A 0.08 M sample of Acetic Acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.82 \times 10^{-5}$

3. A 0.08 M sample of Acetic Acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{~K}_{\mathrm{a}}=1.82 \times 10$	$\mathrm{pH}=$		
Concentrations	$[$	$]$	$\left[\mathrm{H}^{+}\right]$
Initial			
Change			
Equilibrium			

4. A 0.025 M sample of Carbonic Acid, $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{\mathrm{a}}=1.8 \times 10^{-4}$

Concentrations	$[\quad]$	$\left[\mathrm{H}^{+}\right]$	$[$
Initial			
Change			
Equilibrium			

